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Insect derivatives represent an important innovation in specialty crop risk management. An active
over-the-counter market in insect derivatives will require a transparent pricing method. This paper
develops an econometric model of the spatio-temporal process underlying a particular insect popula-
tion and develops a pricing model based on this process. We show that insect derivatives can play an
important risk management role in mitigating B. tabaci (whitefly) damage in cotton. Beyond devel-
oping a new risk management instrument, the key methodological contribution of this paper lies in
pricing derivatives with stochastic properties in both space and time dimensions.
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Derivative securities are used for risk man-
agement purposes in a number of industries.
Derivatives, as they are generically called,
are financial instruments that assume a value
based on an underlying price or index. Stock
options are one type of derivative that allows
the holder to purchase the underlying asset at
a fixed (strike) price. Therefore, a stock option
will have a positive intrinsic value if the re-
alized price is higher (lower) than the agreed
strike level for a call (put) option. In nonfi-
nancial markets, firms that may be harmed by
temperatures that are either too hot or too cold
over a particular season are beginning to use
weather derivatives in order to mitigate the fi-
nancial risk that results. Derivatives can also be
written on other random processes occurring
in nature such as hurricanes or insect popu-
lations. This study concerns the latter case—
derivatives written on invasive species of all
types, and insects in particular.

While there have been no recorded trades
to the best of our knowledge, these “insect
derivatives” promise to be of particular in-
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terest to a diverse set of agricultural firms—
farmers, processors, brokers or input suppli-
ers. Insect derivatives are instruments that as-
sume a value if a reference insect population
rises above an agreed upon level at a particular
place and time. As such, growers who practice
integrated pest management (IPM) methods
in addition to purchasing a derivative contract
can use the resulting increase in value to off-
set potential losses to their crop. On the other
hand, growers who use conventional suppres-
sion technologies can offset the rise in cost re-
quired to control greater insect concentrations.
In either case, chemical companies or other
agribusinesses who stand to benefit from rising
insect numbers serve as natural counterparties,
or agents who will willingly take the other side
of the derivative “bet” in order to offset their
potential loss in revenue should an infestation
not materialize during a particular crop year.
Both the federal government and growers
themselves recognize the need for a more ef-
fective means of managing the financial risk
from invasive species. In a survey of New York
State specialty crop growers, White, Uva, and
Chenge (2003) report that pests in general rep-
resent the third most important source of risk
to growers’ net income, ranking only behind
adverse temperature and drought. Emergency
expenditures by the Animal Plant Health In-
spection Service (APHIS) of USDA on erad-
ication programs attests both to the economic
significance and immediacy of this problem.
While annual spending on emergency eradi-
cation was $10.4 million per year from 1991
to 1995, the annual average between 1999 and
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2001 had risen to over $230.0 million (USDA
2005a). Indeed, some estimates of the total
annual economic loss due to invasive species
range as high as $137.0 billion, including all
direct and indirect economic costs (Pimentel
et al. 2000).

Increasing levels of government-funded re-
search presumes a failure in the market for in-
vasive species risk. However, the absence of a
market for insect risk need not call for a gov-
ernment solution.! Rather, insect derivatives
represent a market-based solution that will al-
low growers to optimally choose the number
and type of securities to buy in order to transfer
the financial risk due to invasive species onto
a counterparty. Despite their appeal, there are
many institutional barriers that must be over-
come before an efficient market for insect
derivatives can arise, not the least of which is an
agreed pricing mechanism. Another is the ba-
sis risk—both spatial and technological—that
is inherent in any derivative based on a “real”
index value. Third, contract terms would have
to be developed to overcome the moral hazard
issues that would arise if a grower were left to
count his own insects. Therefore, the objective
of this study is to show how equilibrium prices
for insect derivatives can be derived from well-
established risk-neutral pricing methods. We
also use this pricing model to achieve a second
objective, namely to demonstrate the value of
insect derivatives as risk management tools to
a wide variety of agricultural producers.

Implementing a risk-neutral pricing model
first requires specification and estimation of
the stochastic process governing insect diffu-
sion. Unlike prices of financial assets, the pro-
cess followed by an insect population evolves
over both space and time. Consequently, this
study represents a significant contribution in
the econometrics of financial assets in that we
consider both dimensions in estimating the un-
derlying diffusion process. Further, developing
a pricing model for insect derivatives also rep-
resents a significant advance in option valua-
tion. Pricing models for other financial deriva-
tives are unidimensional, meaning that prices
for financial assets flow from benefits that vary
only with time. Our concept of insect deriva-
tives, on the other hand, are priced in two-
dimensions, as the underlying “asset” (the in-

! Multiple-peril crop insurance (MPCI) can cover insect dam-
age that results in a measurable loss of yield. However, insect-
damage consists of reductions in quality, cosmetic appearance,
plant-growth or the financial costs of spraying. Many specialty crop
growers either do not have access to MPCI or find that it does not
suit their particular purposes.
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sect population) confers economic damages on
growers that vary both through space and time.
In this paper, we use recent developments in
option valuation theory to price contingent
claims on insect populations that evolve ge-
ographically and temporally using field-trial
data of Bemisia tabaci (whitefly) populations
in California cotton (Naranjo, Chu, and Hen-
neberry 1996).

The first section presents a spatial-temporal
bioeconometric model of insect population
growth and diffusion. Synthesizing current re-
search in spatial econometric and bioecono-
metrics, we develop this model in sufficiently
general terms that its applicability beyond the
particular case at hand should be clear. The
next section describes a risk-neutral valuation
model that is used to price insect derivatives
in both space and time. In the third section,
we present a simple representative farm value
maximization model that incorporates econo-
metric estimates of the relationship between
cotton yield, temperature, and insect densi-
ties. We use this model to demonstrate the
potential effectiveness of insect derivatives in
managing insect-infestation risk. A brief de-
scription of the B. tabaci data used in our
empirical application follows. A fifth section
presents the econometric estimates and simu-
lation results from both the pricing and repre-
sentative farm models. The final section offers
some general conclusions for how an insect-
derivative risk management program may be
implemented and draws several implications
for how spatial-temporal derivatives may be
used more generally in other risk management
contexts.

The Model

Bioeconomic models of insect population
growth typically consider temporal variation
in organism density, or changes in the num-
ber of insects per unit of area over time. How-
ever, insect populations tend to vary both over
time and by geographic location. Entomolo-
gists recognize that invasions of new pest pop-
ulations tend to follow a three-phase process:
(1) arrival, (2) establishment, and (3) spread
(Hof 1998). The statistical model of population
growth and dispersion used here accounts for
both temporal and spatial variation by synthe-
sizing empirical research in entomology and
spatial econometrics (Anselin and Florax 1995;
Gelfand 1998; Anselin 2002). In this section,
we describe a bioeconometric model that takes
each of these factors into account and allows
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for stochastic variation about the expected
path of insect dispersion over space and time.

Bioeconometric Model of Insect Population
Growth

In the spatial dimension, insects in one place
can influence those at another in one of two
ways, depending on whether the effect is direct
or indirect: (1) a spatial-lag process wherein
the population at one point has a direct, causal
relationship with the population at another
point, or (2) by a spatial-error process in which
only the random, or stochastic part of popula-
tion growth at two points is correlated. Areas
that are densely populated tend to promote
more active reproduction than would other-
wise be the case, so the size of the population
at point A is likely to be directly related to
the population at point B. Therefore, a spatial-
lag model is appropriate, but the unobservable
factors that promote or hinder growth at A
are also likely to be the same as those at B,
so a spatial-error model also has some merit.
Because the growth process also implies that
populations at each location in space are re-
lated over time, we include temporal compo-
nents as well. Incorporating both dimensions
into a statistical model for the population of a
given pest at a point in space s at time ¢, the
number of insects is written as: B(s, t), s = 1,
2,...Kandt=1,2,... N with an error process
v(s, t) where both B and v follow nonlinear
spatial-temporal autoregressive processes.
The data generating processes for both in-
sects and errors are written as general func-
tions of distance in space and time and a set
of explanatory variables: B(s, t) = f(0 ]S, T,
X) where 6 is a set of parameters and S and
T are spatial and temporal weight matrices,
respectively. These matrices are specified ex-
ogenously and defined in greater detail below.
In its most basic form, the insect population-
growth-and-diffusion model is given by:

(1)  B(s,t) = f(6]S, T,X) + v(s, 1)
v(s,t) = (RIS, T)+¢

where X consists of other exogenous fac-
tors (control activities, cooling-degree days
(CDD), rainfall, and a binary indicator for the
sample year), v(s, t) is assumed to be additive,
Q is a set of parameters for the error process
and ¢ is an iid error term. Equation (1) implic-
itly assumes nonseparable temporal and spa-
tial effects in order to capture the fact that the
spatial interaction among insects changes over
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time. This assumption is tested in the empirical
application that follows, but is well grounded
in theoretical models of insect diffusion.

Consider the evolution of a given insect pop-
ulation over time, conditional on a fixed lo-
cation, s9. Insect numbers are constrained by
several biological factors: (1) growth rates de-
pend on the number of adults available to re-
produce, (2) reproduction takes time, (3) the
environment has a finite capacity to support
insect populations, and (4) control activities,
typically through insecticides, tend to be quite
effective in reducing population counts. Given
these facts, entomologists typically model pop-
ulation growth in terms of the logistic function
that is common to many other bioeconomic
growth models (Clark 1990):

@ g =asn (1-222)

for the insect population (B) growing at a rate
a in an environment with carrying capacity K.
The differential equation (2) can be solved for
the expected population level at any time, ¢,
which provides a convenient expression for the
mean insect population:

K
1+deTk> +Xp

® B
where k is a constant vector, and d represents
the starting population value relative to carry-
ing capacity: (K — By)/By. With this specifica-
tion, Tk represents an absolute measure of the
temporal distance of each observation from
all others. Depending on data availability, the
population may also be a function of temper-
ature, rainfall, annual fixed-effects, host plant
abundance, other nonchemical abatement ef-
forts, or predator population. In the B. tabaci
example, we have data on the first three of
these factors so include the vector X in (3) in
a linear form with parameter vector (3.

Itis well understood, however, that the num-
ber of insects measured at a particular point
may consist not only of natives, but from oth-
ers that have migrated to that spot, or have
at least bred with others at adjacent locations.
For this reason, models of insect population
dynamics must take into account spatial diffu-
sion and spillover effects as well. Entomolo-
gists have found that the spatial dispersion of
insect populations from an initial point of ar-
rival tends to follow a process akin to Fick’s
Law from particle physics (Liebhold, Halver-
son, and Elmes 1992; Hof 1998). Applied to
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insect diffusion, Fick’s Law implies that the
number of insects starting at point so = 0 will
be normally distributed according to the dis-
tribution function:

(4)  B(s,1) = (B(SO, f)e=Sh) /4ka>

2wy Tk

for any spatial distance, Sk, from the start-
ing point where vy is the diffusion coefficient,
which is assumed to be constant for a partic-
ular species of insect and geographic location.
According to Fick’s Law, the variance of any in-
sect population at a point in time, therefore, is
v Tk. Notice that spatial diffusion is also a func-
tion of time, so clearly the spatial and temporal
dimensions of the problem are nonsepara-
ble in a structural sense. Therefore, equations
(3) and (4) provide a basis for the nonlin-
ear components of the insect growth model.
Let the combined effect of space and time on
the mean insect level be defined as B™(s, t) =
Bi(s, t) + B'(so, t) so that the full nonlinear
model is written as:

©)
B(s,t) = XB + (JW)

B(so, to)ef(Sk)2/4ka
2wy Tk

where u(s, t) is a random error term for any
point in space and time (s, ¢). Anselin (2002),
however, suggests that spatial data may exhibit
spatial-lag patterns even after controlling for
theoretical relationships such as that hypothe-
sized here. Pace et al. (2000) extend thislogic to
spatial-temporal data. In the empirical appli-
cation, we also estimate a composite version of
(5) that allows us to test whether a linear filter
that includes spatial and temporal lag terms is
a sufficient approximation for the more theo-
retically consistent nonlinear model. The com-
posite alternative is written as:

(6)
B(s,t) = XB + ¢sSB(s, t)

+¢rTB(s, 1) + (1:{%)

B(so, to)e—(Sk)2/4ka
S

where ¢g and ¢7 are spatial and temporal lag

parameters, respectively and v(s, ) is an iid
normal error and (5). Namely, we estimate

) +u(s,t)

) + v(s, t)
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each using GMM where the econometric error
term, v(s, ¢) is used to form the moment con-
ditions that allow for the nonlinear estimation
of all model parameters.

Spatial-temporal econometric models are
often estimated using maximum likelihood
(Anselin 1988). Slade (2004), however, notes
that maximum likelihood is infeasible for large
problems because the dimensions of the spa-
tial weight matrix rise with sample size.” There-
fore, alternative methods, such as Generalized
Method of Moments (GMM) (Kelejian and
Prucha 1998, 1999; Pinkse and Slade 1998; Bell
and Bockstael 2000), are becoming increas-
ingly popular. In this study, we follow a two-
step approach similar to Cohen and Morrison-
Paul (2003) in that we consistently estimate
the population equation with GMM in the first
step, and then estimate the error process in a
second step using maximum likelihood. In the
GMM step, the set of instruments includes all
exogenous variables in the model, in addition
to spatially and temporally lagged values of the
dependent variable and all other explanatory
variables as suggested by Kelejian and Prucha
(1998). The weighting matrix for the GMM
procedure is constructed by first estimating the
v(s, t) vector with an instrumental variables
method (two-stage least squares). This ensures
that the GMM algorithm produces consistent
parameter estimates and, hence, consistent es-
timates of € for the next stage. Within the
GMM framework, the set of instruments con-
sists of all exogenous variables and combina-
tions of SB(s, r) and TB(s, t) as suggested by
Kelejian and Prucha (1998).

In order to implement this approach, how-
ever, it is necessary to first define the elements
of the spatial and temporal weight matrices.
There are a number of ways in which this can
be done, particularly with respect to the spa-
tial matrix. Whereas Pace et al. develop an in-
tegrated, spatial-temporal weight matrix that
combines spatial and temporal relationships,
this approach is only feasible in a linear econo-
metric model. Therefore, we create indepen-
dent spatial and temporal weight matrices and
allow the spatial and temporal relationships
among observations to be reflected through
the nonlinear structural model. Our approach
follows Anselin (2002), who provides a useful
taxonomy wherein the elements of the weight

2 The spatial weight matrix, W, for N observations is an N x
N matrix where each element is the distance, in some metric, be-
tween the row and column entry. In a spatial context, multiplying
a dependent variable by W creates a spatial-lag of the variable.
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matrix are motivated by either ad hoc or theo-
retical considerations. Because our insect data
was gathered in an experimental plot, there
were no natural barriers to movement in any
direction and all cells were relatively homoge-
neous. Therefore, we use a direct measure of
distance (Euclidean distance) from one sample
plot to each of the others, and form weights
by inverting and row-normalizing each ele-
ment of the distance matrix. Temporal dis-
tance, on the other hand, is defined simply in
terms of one-period lags between one obser-
vation and the previous. Even with such sim-
ple measures of distance, however, the com-
bined modeling of temporal and spatial effects
can potentially cause the model to be exces-
sively complex with only a few neighboring
observations.

Stochastic Insect Diffusion

Insect populations grow and spread according
to biological processes. As such, observed in-
sect diffusion paths are expected to vary con-
siderably around the deterministic patterns de-
scribed by the theoretical model developed
in the previous section. Sunding and Zivin
(2000), Saphores (2000), and Saphores and
Shogren (2005) model the diffusion of inva-
sive species as a geometric Brownian mo-
tion. Using the composite-model error as an
example, the spatial-temporal equivalent of
their purely temporal specifications is written
as:

(7)  dv(s,t)/v(s, 1) = pdt +mds
+o,dz + o, dr

where  is the drift rate per unit of time, dt,
m is the increment per unit of spatial distance,
ds, dz is an increment of a standard tempo-
ral Weiner process with zero mean and vari-
ance equal to dt, dr is similarly an increment
of a spatial Weiner process with zero mean
and variance equal to ds, o,is the standard
deviation of the temporal process and o is
the standard deviation of the spatial process.
As Sunding and Zivin note, the pure-temporal
version of equation (7) captures several empir-
ical regularities observed across insect groups.
Namely, per-period changes in the population
as well as the population itself are normally dis-
tributed, population levels are always nonneg-
ative, and short-run dynamics are dominated
by the volatility component whereas long-term
dynamics are dominated by trend.
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Itis not likely, however, that any trend away
from the mean in (7) is likely to be sustained
over the long-run as insect populations can-
not grow without bound, nor is it likely that
they disappear without some outside influence.
Consequently, the process in (7) is modified to
include a mean-reversion term so that:

®)  du(s,t)/v(s,t) = (v(s, 1) — v(s, 1)) dt
+mnds + o, dz + oy dr

where k is the rate of reversion to the mean.
Further, insect populations are also subject to
periodic “spikes” or periods of rapid growth
driven by environmental factors that are other-
wise not accounted for in the model. We model
these instances as jumps in the stochastic pro-
cess for v(s, ) (Merton 1976; Jorion 1989; Naik
and Lee 1990), so the most general form of the
error process becomes:

©)
dvu(s, t)/v(s, 1) = (k((v(s, t) — v(s, 1)) — Nb)dt
+vds + o;dz + a,dr + bdg

where jumps occur according to a Poisson pro-
cess g with average arrival rate A and a random
percentage shock, ¢. The random shock, in
turn, is assumed to be log-normally distributed
with &%, The Poisson process g describes a
random variable that assumes a value of 0
with probability 1— \ and 1 with probability
\.

Because equation (7) defines the error pro-
cess in both s and ¢, it implicitly defines two
error processes—one in space and the other
in time. Whereas Cohen and Morrison-Paul
(2003) and Hsieh, Irwin, and Forster (2005)
treat the error process from the spatial au-
toregressive model as following first a spa-
tial process and then a temporal one, this is
somewhat arbitrary as the two processes in
fact occur simultaneously. Focusing on one
dimension while holding the other constant,
however, allows us to specify and estimate
stochastic processes in both space and time
from a single starting point such as (7). For
example, in this equation the parameter mis in-
terpreted as the change in the deviation from
mean population, holding all temporal influ-
ences constant, that is: dv/ds|z 7z, = vn. On
the other hand, the temporal drift, jump and
reversion parameters are interpreted the same
way, that is, they represent the incremental



Richards et al.

variation per unit of time for a given spatial ob-
servation: dv/dt |7z = v((k((v(s, t) — v(s, 1)) —
A\d) + 0, dz/dt + bdq/dt). Inthe empirical ap-
plication, we estimate both of these functions
separately in order to identify the stochastic
temporal and spatial parameters in a consis-
tent way.

Estimates of (9) are obtained by maximum
likelihood estimation over the entire sample
data set, using the likelihood function:

(10)
L(vlso)

T L N 1
=—-T\N— —In(2m) + In —_——
S In@m+ )" [Zn! —p

t=1 n=0

—((dv/dt) v — k(T —v) — nd+a;, /2 +nd*/2)?
<o o 7 )

and a similar expression for the dv/ds process.
In (10) we approximate the change of dv/dt
with a discrete change: dv(so, t) = v(so, ) —
v(so,t — 1) holding s constant at sy and dv/dsin
asimilar way, holding t constant at #y: dv(s, ty) =
v(s, tp) — v(s — 1, p). In the next section, we
show how parameter estimates from (10) are
then used to forecast insect population values
and, hence, determine equilibrium prices for
insect derivatives.

Risk-Neutral Derivative Pricing

Insect derivatives are contingent securities.
There are five essential elements that form any
insect derivative: (1) the underlying insect pop-
ulation index, (2) the length of time of the con-
tract prior to expiration, (3) the location for
where the underlying insect population is re-
ported (e.g., farm, orchard, experiment station
or larger aggregation of farms), (4) the dollar
value attached to each unit of the underlying
index (marginal loss in revenue attributable to
an additional insect), and (5) the strike pop-
ulation index value. At the agreed expiration
date of the option, a holder of a call option
will receive payment if the insect population
index is greater than the strike level, and the
holder of a put option will receive payment
if the insect population index is less than the
strike price. The amount of payment is equal to
the level of insect populations that are greater
(less) than the strike level multiplied by some
notional dollar value per unit of the underlying
insect population index. If the option is not ex-
ercised, the option buyer will forfeit his option
premium. Sellers of options, or option writers,
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receive a premium for providing this option to
the option buyer.

Theoretical Insect Derivative Pricing Model

Proper pricing of such an instrument is critical
for its successful trade. If the insect popula-
tion represents a hedgeable risk, or one that
growers can transfer by trading an underlying
futures contract, then it would be possible to
price an insect option using a traditional, no-
arbitrage, Black—Scholes pricing model. How-
ever, as in the case of weather derivatives
(Richards, Manfredo, and Sanders 2004), in-
sects are not tradable assets. Without an effec-
tive hedge, it is necessary to consider the mar-
ket price of risk and devise a way of estimating
its impact on derivative prices.

We account for the market price of risk using
the risk-neutral valuation model of Cox, Inger-
soll, and Ross (1985). Applying this model in-
volves a three-stage algorithm. First, the insect
population process must be reduced to a mar-
tingale, O, (essentially, a zero-drift stochastic
process) by estimating the distribution gov-
erning insect diffusion as described above and
removing all systematic components from the
observed process in space and time. This step—
“risk neutralizing” the process—means that
the best guess of the insect population at time
t; is its value at fy, or: E[B(so, t1)] = B(so,
to). By removing the predictable components
of each part of the insect process, we change
the Weiner processes dz to dy and dr to dp,
where y and p are Q-Weiner processes (Alaton
et al. 2002). The second step consists of form-
ing an expectation of the intrinsic value of the
derivative under the Q measure defined by
the risk-neutralized process. In the third step
we discount the expected payoff value back to
the current date at the risk-free rate. This dis-
counted expected payoff is the market equilib-
rium price of the derivative.?

More formally, given a constant market
price of risk, the martingale that defines to-
tal (deterministic and random) time-variation
in the underlying index becomes:

(11)

dB(so,t)/B(so,t) = dBm(S(), t)/B™(sg, t)
- (k(5-v) = b — b,
+o,dy + ddg

3 Clearly, discounting is not necessary for a derivative defined
between two points in space.
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where dy is now a Q-Wiener process and s,
is the market price of risk, expressed on a per
unit basis. Unlike other types of derivatives, in-
struments written on fugitive resources of any
type (insect, wildlife or bird populations, wa-
ter, air pollutants, and potentially many oth-
ers) must reflect stochastic variation in the spa-
tial dimension as well. Although the temporal
notion of an expiry date is more intuitive to
those familiar with traditional derivative se-
curities, the analogy to a spatial derivative is
valid, but more complex. If the value of the
underlying index varies in a random way from
one place to another, it is possible to define a
derivative security from the perspective of one
point with respect to any other point. Similar
to the temporal case, it is important that the
spatial stochastic process be stable so that the
expected value of the difference between pop-
ulations at the base and reference locations de-
pend only on the distance between them and
not on the physical location. This is a criti-
cal assumption, but is likely to be violated in
cases where there are other impediments to
the movement or interaction of insect popula-
tions such as streams, hedges, or wind-breaks.
In these cases, the spatial distance matrix can
be modified in order to address these discrete
measures of biological distance. Specifically, by
removing all systematic variation in s, we de-
fine a spatial martingale similar to the temporal
version in (11):

(12)
dB(s, to)/B(s, o) = dB™ (s, t9)/B" (s, to)
+ (’Tl - leO'x)dS, +05 dp

where {5, is the market price of spatial risk
per unit of B. With these two functions, we
can then use the parameters estimated above
to find the expected insect population at an
“expiry” value of ¢ and of s, given values for
each market price of risk. As in the case of
weather derivatives, however, finding reliable
estimates of the market price of risk represents
a significant empirical problem (Cao and Wei
1999; Alaton, Djehiche, and Stillberger 2002;
Richards, Manfredo, and Sanders 2004).
Typically, researchers attempt to calibrate
the market price of risk using price series from
similar instruments that are traded on orga-
nized exchanges. For insect derivatives, how-
ever, no such exchange exists. It is a basic tenet
of asset pricing that a portfolio of two deriva-
tives written on B can be constructed such that
their combined return is equal to the risk-free
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rate. Thus, if we define the rate of drift in (11)
as w = dB"/B™ + (x(v — v) — \d), the return
to the risk-neutralized process must be equal
to the risk-free rate: o — {s,0, = r. Using any
asset pricing model—the discrete-time capital
asset pricing model (CAPM) for example—it
must also be the case that the return to any
particular asset must be equal to the risk-free
rate plus a security-specific market-risk pre-
mium: p = r + B(r,, — r), where r,, is the
return to the market portfolio, and B mea-
sures the systematic risk of the security. In the
CAPM, however, we know that r,, — r = {5,
so the risk premium to any asset is determined
by the market price of risk and the security-
specific measure of systematic risk. System-
atic risk, in turn, depends on the covariance
of asset and market returns and the variance
of market returns: B = oy /crfn, SO any secu-
rity with returns that are statistically indepen-
dent of the market must have a zero market
price of risk. Because this is indeed likely to
be the case for localized insect populations, we
set i, =0in (11) and calculate the equilibrium
price by discounting the expected terminal
value of the derivative at the risk free discount
rate.

Empirical Option Pricing Model

The theoretical framework described in the
previous section is used to price a complete
chain of spatial and temporal insect deriva-
tives for the B. tabaci data. Unlike financial
options where the underlying index is driven
by temporal variation, an insect option is de-
fined over both temporal and spatial changes
in the underlying index—in this case a popu-
lation count of B. tabaci on cotton plants. Be-
cause space has two dimensions and time has
one, the chain we estimate is perhaps more ac-
curately described as an option “cube” for a
discrete set of expiry dates and potential insect
locations.

To account for the spatial dimension, a pric-
ing grid is constructed for each point in time,
corresponding to the experimental plots where
the population data were collected, which con-
sist of five rows and five columns.* The grid
is numbered horizontally and vertically from
one to five where point so = (1,1) is considered
the origin of the insect infestation. Distance
is defined in Euclidean terms, consistent with

4 Note that this design can easily accommodate insect population
data gathered in a nonexperimental environment. Selection of the
grid design is, however, up to the researcher’s discretion.
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the model developed above. An infestation is
assumed to commence at sy and then spread
according to Fick’s Law. Therefore, the spa-
tial mean of the insect population at any given
point on the spatial grid is B°(s, ) following
equation (4). The temporal mean, B'(s, ), is
governed by the process described in equa-
tion (3). Therefore, the mean level of insects
at each point in space on the spatial grid is
B™(s, t), which is the sum of the spatial and
temporal mean for a particular point in time
t. The stochastic temporal component is mod-
eled following the martingale defined in equa-
tion (11) and the stochastic spatial component
modeled as in equation (12).

Considering both the mean and stochastic
components, the number of total insects at
each point in space and time, B(s, ?) is:

(13)
B(s,t) = B"(s,t)+dB(so,t) + dB(s, to)v

where dB(sg, t) is the instantaneous change
from equation (11) and dB(s, ty) is the instan-
taneous change from equation (12). Therefore,
each cell in the spatial grid has a different in-
sect population value.

Given the underlying index and the time
to expiration, the other elements needed to
price an option on insect derivatives is the des-
ignated strike population level, the risk-free
rate, and the notional value of the derivative.
In practice, the strike level used should coin-
cide with economic loss threshold levels asso-
ciated with a B. tabaci infestation, or levels of
infestation which lead to increased and costly
eradication efforts.> For illustrative purposes,
we use the following strike levels in estimating
the option prices: 5, 10, 20. We assume that the
notional value of each insect is one dollar and
the risk-free rate of interest, r, is 5%, which is
reflective of short-term interest rates in the fall
of 2006. However, it is important to note that
the choice of the risk-free interest rate does
not materially affect the value of the option.

In the absence of a closed-form solution to
the option pricing problem, Monte Carlo sim-
ulation procedures are used to estimate the
fair value of call options at each strike level
for times to expiration of 1, 2, and 3 months.
Monte Carlo simulation has been used exten-
sively in the literature in valuing options as it

5 “Economic loss thresholds” are concepts in entomology that
refer to the population level at which a grower can reasonably
predict that the population will rise to the “economic injury level
(EIL)” or the level at which control costs are at or below crop
losses.
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is an effective and easily generalizable way to
value an option where the underlying index
follows a complex process. The steps in the
Monte Carlo simulation are as follows. First,
the temporal Q-Wiener process in equation
(11), dv, is specified as €,/ where €, "N (0, 1)
and ¢ is the time to expiration of the option ex-
pressed in days. Second, the spatial O-Wiener
process in equation (12), dp, is €;4/s where s is
the normalized inverse Euclidian distance de-
fined in the spatial weighting matrix S for a par-
ticular point on the spatial grid and ;"N (0, 1).
The jump diffusion process described in equa-
tions (11) and (12) is also modeled within the
same Monte Carlo algorithm, where the two
stochastic elements of the jump diffusion pro-
cess are the arrival rate and the distribution
of the random shock. Hence, for a given time
to expiration ¢, a Monte Carlo simulation is
run using 10,000 draws from the distributions
€, and €, the distribution governing the arrival
rate of the jumps in the jump diffusion pro-
cess, and the distribution of the random shock.
The Monte Carlo simulation produces a distri-
bution of option payoff values as expressed in
equation (13). The mean of the payoff distribu-
tion is then discounted back to the present by
the time to maturity ¢ using rate r yielding the
option value. Therefore, in general, the value
of the call option at a given point in space s for
expiration at time ¢ and strike level x, C(s, 1),
can be expressed as:

14) C(s,t) =e foo F(B(s, 1))
x (B(s,t) —x)dB(s, 1)

where the integral is approximated using the
Monte Carlo algorithm.

Risk Simulation Model

The discussion to this point has made the case
that designing and pricing an insect deriva-
tive is indeed possible, but whether trading
them is desirable from an economic stand-
point depends on their effectiveness in im-
proving risk/return outcomes for agricultural
producers. We define effectiveness in terms of
expected utility—whether hedging with insect
derivatives is likely to improve returns at given
levels of expected net income volatility. As is
standard practice, utility rises in the level of
net income, but at a declining rate (declining
marginal utility of income). Define the degree
of risk aversion of the representative grower as
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v, where higher values of y mean that marginal
utility falls at a greater rate as income rises.
Further, define a power utility function where
Ulg(w)] represents the utility of a representa-
tive grower g from earning an uncertain level
of profit such that:

(15)  E[Uy(m)] = E [7,/(1 = )]

where vy is the coefficient of risk aversion,
0 < vy < 1 for concavity and E[ ] is the expecta-
tion operator. Power utility is an attractive al-
ternative because it is a simple representation
that possesses all the characteristics required
of a well-behaved utility function: it is concave
by construction, it implies a constant relative
risk aversion level in profit provided the coef-
ficient of risk aversion is bound on [0, 1] and
exhibits decreasing absolute risk aversion as
wealth rises. If the coefficient of risk aversion
is equal to zero, then the grower is “risk neu-
tral,” or indifferent to the volatility of his or
her income stream.

Defining the objective in terms of expected
utility allows us to estimate the risk premium
associated with a given control strategy. Specif-
ically, define the certainty equivalent (CE)
value as the dollar amount that he or she
would accept with certainty in lieu of the risky
prospect of receiving an uncertain amount
of net income with expectation E[m,]. In a
power utility framework, a grower’s CE value
is found by solving (15) for m,. The risk pre-
mium grower g is willing to pay, therefore,
becomes:

(16) R(mg) = E[m,] — CE(m,)
= E[m,] — (1 = )E[U, )/~

for an uncertain level of net income. For the
B. tabaci example, net income from growing
cotton is assumed to be equal to the difference
between cotton revenue and total production
cost, where revenue is the product of uncertain
yields (g,) and prices (p): w, = pge — K(cg)
and total production cost depends on the level
of insect control activities, c,. In order to cap-
ture the likely diminishing marginal returns to
insect control activities, yield in year ¢ is as-
sumed to be a simple Cobb-Douglas (log-log)
function of insect density, control activities and
a binary variable to account for year-specific
population differences:

In(qq..) = Bo + Biln(Bg,) + Baln(cg.r)
+ B3D94 + 8g’[

(17)
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where D94 is a binary variable for the year
1994 (D94 = 1 if the year is 1994 and is zero
otherwise), €4, is a grower-specific i.i.d. ran-
dom error vector and the remaining variables
are as described above. Without data on other
inputs, the yield function in (17) assumes all
growers use best-practice technology so that
Bo represents their average yield, conditional
on optimal input application. Further, insect
control and, hence, populations are assumed
to be endogenous, so equation (15) is esti-
mated using an instrumental variables proce-
dure (two-stage least squares) where the set
of instruments includes all exogenous and pre-
determined variables in the system.®

We evaluate the risk-return performance of
alternative hedging strategies using three com-
monly used metrics: (1) a Sharpe ratio, (2)
a 5% Value-at-Risk (VaR) measure, and (3)
a certainty equivalent value. The Sharpe ra-
tio is a measure of return per unit of risk de-
rived from an expected utility maximization
framework. Specifically, it is defined as the ra-
tio of excess returns to an asset to the coeffi-
cient of variation of its returns, where “excess
returns” are defined relative to the risk-free
rate of return. Formally, the Sharpe Ratio is
written as:

SR, = (Rg - R.f’)/(sg/kg)

where R, is the return to the asset or venture
in question, Ry is the risk-free rate of return, s,
is the coefficient of variation of returns and R,
is the mean return. Value-at-Risk (VaR) mea-
sures the maximum amount a firm can expect
to lose at a certain confidence level for a cer-
tain period of time. For example, if a grower’s
VaR is —$200.00 per acre at 5% on an annual
basis, this means that there is a 5% chance he
or she will lose at least $200.00 during the year.
VaR provides a very intuitive notion of the
monetary equivalent of the risk facing a firm
as it immediately converts a notion of spread
or dispersion into a dollar-equivalent figure
(Jorion 1997). Third, we compare the CE value
defined in equation (16) for alternative insect-
risk management strategies. From a grower’s

% Input decisions are likely to be influenced by the presence of
a risk management tool (Horowitz and Lichtenberg 1993), which
would in turn influence the value of the derivative. In the absence
of detailed data on chemical input usage, we ignore the likely endo-
geneity of input decisions in the empirical analysis. Further, Clark
and Carlson (1990) show that pesticide resistance causes the ab-
sence of insects to be a common property resource. In this paper,
derivative prices are calculated based on privately optimal deci-
sions, and not on socially optimal outcomes.
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perspective, a higher CE value is preferred be-
cause it implies a lower “cost of risk” or risk
premium that a rational investor would de-
mand. By comparing each of these measures
between hypothetical scenarios wherein grow-
ers do or do not use insect derivatives, we de-
termine whether bug options represent poten-
tially valuable risk management tools.

A number of assumptions are made in or-
der to implement the insect-derivative simula-
tion model. First, the number of contracts used
to hedge insect-yield risk from a typical acre
of cotton in the Imperial Valley (the “hedge
ratio”) is determined by estimating a simple
linear regression of yield on insect densities
(Cecchetti, Cumby, and Figlewski 1988) and
is estimated at 5.57. The slope parameter in
this regression shows the marginal impact of a
one-adult-insect-per-leaf rise in population, so
multiplying the marginal impact of one insect
by the price of cotton provides an estimate of
the marginal revenue-loss, or the hedge ratio.
Second, in order to determine the independent
effect of random insect growth on yields, the
simulation is conducted with insect control ac-
tivities held at their mean. While understand-
ing the role of biological and chemical insect
suppression is an important pursuit, the point
of this research is to show how financial risk
can be mitigated independent of traditional
control methods. Third, although cotton prices
represent another source of economic risk in
reality, prices are fixed at their long-term aver-
age. Finally, the coefficient of relative risk aver-
sion (3b3) is allowed to vary from 0.1 (near-
risk neutrality) to 0.9 (extreme risk aversion)
in order to convey the importance of attitudes
toward risk in determining the value of in-
sect derivatives in terms of the expected-utility
framework. The net income/expected utility
model is simulated using Monte Carlo meth-
ods with @Risk stochastic simulation software
(Palisade Corporation 2001).

Insect Population Data

The data for this study consist of two years of
experimental field-trial data on B. tabaci pop-
ulation growth and yield damage gathered by
researchers based at the Western Cotton Re-
search Laboratory (WCRL) in Phoenix, AZ
using cotton fields in Brawley, CA (Naranjo,
Chu, and Henneberry 1996). B. tabaci is a par-
ticularly nefarious pest in the U.S. Southwest
as they tend to travel large distances, repro-
duce quickly and impair yields significantly by
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depriving the plant of vital nutrients. Weekly
counts of adult B. tabaci were collected each
year over two seasons (21 weeks in 1994 and
18 weeks in 1995) for 25 different plots, ar-
rayed in a 5 x 5 latin-square design. Within
the 25 plots, there are five different treatments,
ranging from nothing (control) to a relatively
intensive regimen of insecticides. No attempt
was made here to estimate the impact of spe-
cific chemicals or application techniques, due
to their heterogeneity, so control procedures
were assigned a linear scale rising from 1 (con-
trol) to 5 (intensive chemical management).
In this way, we are able to study the impact
of more intensive control activities on popu-
lation levels at different times during the sea-
son. Control efforts cause the data to exhibit
greater variability than would otherwise be
the case, allowing us to more clearly identify
the underlying population diffusion process.
At both locations, yield samples taken at har-
vest for each plot provide data regarding the
yield-injury relationship in cotton. The data
summary in table 1 shows that there is con-
siderable variation in insect numbers in these
test plots—from zero to 241 adults per leaf—
depending on the sample date and the control
activity. While these data show far more popu-
lation growth than growers experience in real-
world settings (due largely to the pervasive-
ness of insecticide spraying, or other biological
control methods) they do provide an accurate
assessment of the type of population pressure
growers face when they design control strate-
gies. Because these strategies are costly, access
to a cost-risk management tool is important.

Table 1. Insect/Weather Summary Statistics

Std.
Variable N Mean Dev. Min. Max
Treatment (#) 975 3.000 1.414 1.000  5.00
Eggs (#/cm?) 975 6.830 11.27 0.030 104.54
Nymphs (#cm?) 975 1.486 2.715 0.000 25.970
Adults (#/leaft) 975 12.793 27.72 0.000 241.00
Temp. Max. (°F) 975 100.72 10.47 73.00 115.00
Temp. Min.(°F) 975 67.564 10.14 47.00 82.000
CDD (°F) 975 19.538 9.642 0.000 34.000
Rain (in.) 975 0.002 0.016 0.000 0.100
CCDD (°F) 975 1,216.5 853.1 116.0 3,017.0
CRain (in.) 975 1.644 0.294 1300 1.960
Yield (kg/ha) 50 1,553.0 394.22 660.0 2,380.0

Notes: Variables are as follows: Treatment is the number of pesticide applications
per season, “Eggs” is the number of eggs per cm?, “Nymphs” are immature insects
per cm?, “Adults” are adult insects per leaf, “Temp. Max.” is maximum daily
temperature in ° F, “Temp. Min.” is minimum daily temperature, “CDD” is cooling
degree days (H — 65°F), “Rain” is amount of rain received, in inches, on one day,
“CCDD” is the cumulative number of CCDs over the sample period, and “CRain”
is the cumulative rainfall over the sample period.
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All weather data are from the National
Oceanic and Atmospheric Agency (NOAA).
Daily weather data are used, but are aggre-
gated out to a weekly basis so they are com-
parable to the experimental insect population
data. Insect numbers are expected to be in-
fluenced by a number of weather-related vari-
ables, including the daily maximum and mini-
mum temperature, the number of cooling de-
gree days (CDD) on a particular day and over
the entire growing season, and the amount of
rain, again both on a particular day and on
a cumulative basis over the growing season.’
From the data summary in table 1, it is ap-
parent that there is little variability in rainfall
in the Imperial Valley over a typical growing
season, but temperature varies over a consid-
erable range. Consequently, the results in this
study should be interpreted as representative
of a relatively extreme climate, one with lit-
tle rainfall but more temperature variability
than in most other growing locations. The ef-
fect of these temperature extremes will be de-
termined in the empirical growth model results
that follow.

Data for the risk management simulation
model are taken from representative Impe-
rial County cotton farm budget prepared by
University of California Cooperative Exten-
sion officials (University of California 2005).
Operating costs reflect all land preparation,
seeding, growing and harvesting costs and are
expressed in current, 2004 values. Growing
costs include the material and labor cost for
a number of insect treatments equal to the
sample average from the B. tabaci trial data.
Revenues, on the other hand, are calculated
using 2004 harvest prices obtained from the
Economic Research Service, USDA (USDA
2005b).

Results and Discussion

The empirical model described above neces-
sarily involves a number of steps. Therefore,
our discussion of the results considers each in
turn: (1) estimates of the mean insect growth
function, (2) estimates of the process govern-
ing stochastic variation from the mean, (3) es-
timates of the B. tabaci damage function, and
(4) price estimates of an example insect deriva-
tive, defined as a call option on B. tabaci at the

7 A cooling degree day is defined as the difference between the
average temperature on a given day and 65 °F, or CDD = (H —
65°F), where H is the average temperature on a given day.
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Brawley, CA research station. Although the
primary objective of this study is to develop a
pricing model for insect derivatives, no empir-
ical research to date treats insect population
growth and diffusion in an integrated spatial-
temporal framework, so the results from steps
(1) and (2) are likely to be of some interest.

While Fick’s Law and the logistic growth
model impose some structure on the non-
linear diffusion model, a linear or compos-
ite model may provide a superior fit. There-
fore, finding the best model becomes a sta-
tistical exercise. To find the best specification,
we estimated three different nonlinear spatial-
temporal models. In order to maintain a con-
sistent estimation framework, all models were
estimated using the same set of instruments,
which were described above. Within each class
of models, specification tests are based on
prediction accuracy, or a mean-square error
(MSE) criteria and on a quasi-likelihood ra-
tio (QLR) testing procedure (Davidson and
MacKinnon 2004). In each case, the QLR test
statistic value is G = (Q, — Q1) where Q>
is the GMM objective function value under
the alternative hypothesis, and Q; under the
maintained. G is chi-square distributed with
q degrees of freedom, where g is the num-
ber of parameters that differ between the two
models.

In table 2, we report the estimation results
from three alternative specifications: (1) only
temporal-growth effects, (2) spatial-diffusion
and logistic growth, and (3) a composite model
of spatial-temporal growth and diffusion and
linear spatial-temporal lags. Comparing mod-
els (1) and (2), the temporal growth model out-
performs the spatial-temporal model in terms
of predictive accuracy, and explanatory power,
but produces a slightly higher Q value. With
one degree of freedom, however, the differ-
ence (2.200) is not statistically significant, al-
though the spatial diffusion parameter is sta-
tistically significant on its own. Clearly, adding
a spatial diffusion term does little to improve
model fit, but we cannot reject the theoret-
ical motivation for including it. Comparing
both models to the composite alternative, how-
ever, produces a significantly better fit to the
data. In terms of predictive accuracy, the re-
sults in table 2 show that composite, nonlinear
spatial-temporal growth and diffusion model
produces a MSE value less than half of either
of the other two. This is perhaps to be expected
given the larger parametric size of the compos-
ite model. The composite model also produces
a far higher R? value and a G statistic value
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Table 2. Nonlinear Spatial-Temporal Insect Model: GMM B. Tabaci,

Imperial Valley, CA 1994-95

Temporal Spatio-Temporal Composite
Var. Est. Std. Err. Est. Std. Err. Est. Std. Err.
a 0.293* 0.087 0.293* 0.088 0.269* 0.106
v - - 0.113* 0.018 0.197* 0.099
SY - - 1.223* 0.047
TY - - 0.454* 0.032
STY - - —0.522* 0.060
Treat —0.283* 0.047 —0.283* 0.049 —0.079* 0.037
CDD 0.106* 0.006 0.106* 0.007 0.009 0.006
Rain —6.845 5.141 —6.846 5.095 —1.559 3.466
1994 0.598* 0.164 0.598* 0.163 0.064 0.113
R? 0.163 0.164 0.629
MSE 6.387 6.388 2.838
] 2,172.382 2,170.182 1,795.073

Notes: A single asterisk (*) indicates significance at a 5% level. vy is defined as the spatial diffusion parameter and « is the
temporal-growth rate. Q is the value of the GMM objective function.

of 364.999. With three restrictions at a 5.0%
level of significance, the critical value for the
QLR (chi-square) test is 7.815, so we easily re-
ject the simple spatial-temporal model in favor
of the composite. Note, however, that among
the other explanatory variables only the treat-
ment effects are statistically significant in the
composite model, whereas temperature and
the 1994 dummy are not significant. This result
suggests that failing to completely account for
spatial and temporal lags leads to an overesti-
mate of the effect of environmental and con-
trol factors. Or, this may also reflect that the
temperature simply does not vary enough in
the Imperial Valley to have an appreciable ef-
fect on insect growth rates. Estimates of the
key structural parameters—measuring growth
() and diffusion (y)—are, however, similar
among all models.

Based on the goodness-of-fit results re-
ported in table 2, we use the errors from the
composite model to estimate the stochastic
process underlying insect diffusion. Four mod-
els are considered for this purpose, three tem-
poral and one spatial. Each model is estimated
using maximum likelihood. Among the tem-
poral models, we adopt a “simple-to-general”
model selection strategy in which successive
variations include elements that are likely to
be important to the noise process driving in-
sect growth. Tests of the regression residuals
left by each of the models described in table 2
(Jarque and Bera 1987) reject the null hypoth-
esis of normality. Preferred models are chosen
on the basis of a likelihood ratio (LR) test-
ing procedure, the results of which are shown
in table 3. The LR test statistics show that
each model is preferred to a null model (in

Table 3. Stochastic Insect Error Process: MLE B. Tabaci, Imperial Valley, CA 1994-95

GBM MR-GBM MR-GBM-J S-GBM
Var. Est. Se Est. Se Est. Se Est. Se
W 0.533* 0.162 - - - - - -
o 274.481* 15.547 274.762* 17.752 1.335* 0.033 1.789* 0.042
K - - 0.006* 0.002 0.016* 0.003 - -
3 - - - - 795.720*  132.561 - -
é - - - - 399.731* 66.423 - -
A\ - - - - 0.422* 0.021 - -
n - - - - - - 0.002* 0.0006
LLF —3,909.400 -3,901.877 -2,366.719 —1,850.298
X2 52.938 68.016 3,216.254 5,236.616

Notes: GBM is a geometric Brownian motion, MR-GBM is a mean-reverting GBM, MR-GBM-J is a mean-reverting GBM with Poisson jumps. The chi-square
statistic is calculated as ng =2(LLFy — LLFR) where LLFy is the unrestricted log-likelihood value and LLFp is the log-likelihood value of the null model
and ¢ is the number of restrictions. A single asterisk indicates significance at a 5.0% level.
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Table 4. Call Option Prices: X = 5 Insects

Grid Location
1 2 3 4 5

t = 1 month
1 8.832 8.266 6.694 4.475 2.053
2 8.289 7.718 6.201 4.087 1.771
3 6.701 6.2224 4.921 3.009 0.987
4 4.466 4.095 3.008 1.480 0.082
5 2.043 1.758 0.967 0.076 0.000

t = 2 months
1 18.506 18.010 16.577 14.438 11.776
2 17979 17.536 16.148 13.997 11.405
3 16.590 16.134 14.857 12.871 10.418
4 14.435 14.032 12.849 11.075 8.873
5 11.773 11.385 10.411 8.858 6.973

t = 3 months
1 20438 20.106 19.051 17.405 15.345
2 20.059 19.743 18728 17.122  15.063
3 19.041 18.737 17.757 16209 14.235
4 17.447 17.112 16.237 14.793 12.957
5 15.306 15.040 14217 12921 11.229

Notes: Option values are found using Monte Carlo simulation with 7" =
10,000 and r = 5.0%.

which all parameters are restricted to zero),
but also that the most comprehensive model
is preferred to the other two. Consequently,
we choose a mean-reverting geometric Brow-
nian motion model with Poisson jumps to gen-
erate temporal insect forecasts. Only one spa-
tial model was considered because there isno a
priori reason to expect any spatial mean rever-
sion nor discrete jumps. Compared to a null
model, however, the results in table 3 show
that this simple spatial error specification pro-
vides a satisfactory fit to the data. Therefore,
the full model in equation (9) above is used to
forecast both spatial and temporal insect pop-
ulation variation and to calculate all derivative
prices.

The resulting prices are shown in table 4 for
a strike population value x = 5.8 The prices
shown in this table describe one part of a com-
plete “chain” of options, consisting of three dif-
ferent times to maturity for one strike. If an an-
alytical option pricing formula were available,
it would be possible to derive “greeks” for the
options, or the sensitivity of prices to changes
in each of the underlying parameters. Because
we use numerical solution methods, however,
this table shows one greek, the theta, or sen-
sitivity to time to expiry. Comparing prices

8 Option prices for strike population values of 10 and 20 insects
show a similar pattern and are available from the authors.
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across different population values is straight-
forward and produces a second, and important,
greek called the “delta.” Delta is important be-
cause it determines the number of options that
must be purchased in order to offset a partic-
ular level of insect risk.

Relative to conventional option pricing
methods, the option values in table 4 reveal
the importance of valuing the spatial compo-
nent of insect diffusion. For every time to ex-
piry, option values decrease the further the
spatial distance from the origin (1,1), as ex-
pected. This is consistent with Fick’s Law. In
fact, the differences in option values are quite
substantial across the grid. For example, with
one month to expiry the value of the call op-
tion at the origin (1,1) is $8.832, while it is
$0.00 at the opposite corner (5,5). Consistent
with option pricing theory, as the time to ex-
piry increases, so does the value of the option.
This is best illustrated by looking at the aver-
age option value over the entire grid for each
time to expiry. For one month to expiry, the
average option value is $3.929, for 2 months is
$13.516, and for 3 months is $16.652. Also as
expected, given the nature of Fick’s Law, the
differences between option values within the
grid also change depending on the time to ex-
piry. As the time to expiry increases, insects, in
theory, have more time to disperse along the
grid. At 1 month to expiry, the difference be-
tween the (5,5) and (1,1) options is 100.00%
of the (1,1) value, whereas it is only 45.1% at
3 months to expiry. The spatial distribution of
prices, therefore, suggests that trading a chain
of insect derivatives—more appropriately re-
ferred to as a “grid”—would be necessary to
hedge insect risk.

Similar patterns arise with strike values of 10
and 20 insects. As expected, higher strike val-
ues lead to lower option prices. This is expected
when valuing call options as raising the strike
value reduces the chances that the underlying
index will exceed the strike, thus reducing the
value of the option.

Traders in this market, however, are likely
most interested in the risk management im-
plications from trading insect derivatives. Two
risk-metric comparisons are necessary to de-
termine whether insect derivatives will be ef-
fective spatial-risk management tools: (1) a
“complete” hedging strategy versus no hedg-
ing, where complete is defined as a full grid of
options, and (2) hedging with no spatial differ-
entiation versus hedging with a full grid of spa-
tially differentiated options. Using the stochas-
tic simulation framework described above, we
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Table 5. Risk-Return for Hedging vs. No Table 6. Risk-Return for Spatial vs.
Hedging Nonspatial Hedge
v=0.1 v=05 v=09 v=0.1 v=05 v =09
No Hedging Nonspatial
Sharpe ratio 1.428 1.428 1.428 Sharpe ratio 1.366 1.366 1.366
VaR (5.0%) —6.227 —6.227 —6.227 VaR (5.0%)  —34.031 —-34.031 —34.031
Certainty 51.223 44.241 21.550 Certainty 54.567 38.734 5.487
equivalent equivalent
Full Hedging Spatial
Sharpe ratio 2.959 2.959 2.959 Sharpe ratio 2.889 2.889 2.889
VaR (5.0%) 32.056 32.056 32.056 VaR (5.0%) 32.058 32.058 32.058
Certainty 52.282 52.282 52.282 Certainty 52.400 51.348 50.367
equivalent equivalent

Notes: Monte Carlo simulations conducted with 10,000 draws from standard
normal error distributions. See text for assumptions regarding net income
calculations.

created a representative farm consisting of
four separate “fields” consisting of four cor-
ners of the pricing grid shown in table 5. In this
way, we capture the qualitative implications
of a spatial-temporal hedge while creating the
most parsimonious modeling framework. A
hedge consists of purchasing a number of call
options (given by the hedge ratio) in the spring
and holding until harvest, whereupon the op-
tion is sold at market value. All revenue and
cost estimates are based upon the representa-
tive farm described in University of California.

Table 5 provides a comparison of the
three risk-return measures described above
for scenario (1), hedging versus no hedging.
Clearly, hedging dominates by all measures.
The Sharpe Ratio for hedging producers is
more than double that for nonhedging produc-
ers, while the VaR is over $38.00/acre higher.
Neither of these measures, however, allows for
the likelihood that growers differ in their atti-
tudes toward risk. For growers who are slightly
risk averse, hedging provides modest improve-
ments in CE ($1.06/acre), while for extremely
risk averse growers, the improvement is more
dramatic: $28.71/acre, or an amount equal to
the mean of hedged net income. How much of
this benefit derives from the spatial hedge and
how much from a traditional temporal hedge,
however, remains an open question.

Table 6 compares a traditional hedge ac-
counting for temporal uncertainty with a
spatial-temporal hedge. To make the compari-
son valid, we define a nonspatial hedge as one
in which there is no difference among each of
the four “plots” that comprise the represen-
tative farm. Therefore, each option is priced,
and pays off, to reflect the risk profile at grid
location (1,1) whereas the yield outcome is

Notes: Monte Carlo simulations conducted with 10,000 draws from standard
normal error distributions. Nonspatial assumes all payouts fixed at (1,1) grid
location values.

determined by the actual risk faced at each lo-
cation on the farm. Admittedly, this scenario
builds error into the alternative hedging strat-
egy, but the key question is whether correct-
ing this error is worth the extra effort. Ac-
cording to the results in table 6, accounting
for differences in spatial insect risk is indeed
important. As in the previous case, the spa-
tial hedge dominates the nonspatial hedge in
terms of the resulting Sharpe Ratio, VaR and,
for moderate and extreme levels of risk aver-
sion, the CE measure. In fact, the advantage
of a spatial hedge over a nonspatial hedge ap-
pears to be greater than the advantage of hedg-
ing versus not hedging. This result suggests that
the spatial basis risk inherent in insect deriva-
tives, which was expected to be severe a pri-
ori, is more important than temporal risk of
growing insect populations. This is somewhat
surprising, but apparent from the growth pat-
tern of insects between 0 and 60 days. The dif-
ference in population levels from one part of
the grid to the other is far greater than the
difference between months for the same grid
location.

Conclusions and Implications

This study describes a new class of financial
instruments that have the potential to help
farmers transfer some of the risk due to dam-
age caused by invasive species, or to offset
some of the additional cost in controlling an
infestation—insect derivatives. Insect deriva-
tives are contracts that specify a payment from
one counterparty to another should an index
of insect population density at an agreed loca-
tion exceed (or fall short of) an agreed level
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by a specified expiry date. In this study, we
address the primary obstacle to the develop-
ment of an active trade in insect derivatives,
namely the lack of a transparent method of ar-
riving at equilibrium prices. We also develop a
new method of accommodating the spatial ba-
sis risk that is endemic to a wide range of “real”
derivative contracts such as weather options,
catastrophe bonds and insect derivatives.

Our pricing model has at its core an in-
sect population forecasting model that synthe-
sizes principles from entomology and spatial
econometrics. Under risk-neutral measure, the
price of an insect derivative is calculated as
the present value of its intrinsic value at ex-
piry calculated at the risk-free interest rate.
Because we estimate stochastic processes for
insect growth and diffusion in both temporal
and spatial dimensions, derivative prices are
calculated with reference to a base time pe-
riod and location. In this way, users will be able
to price two-dimensional derivatives. This de-
velopment has implications beyond the insect
derivative application described here. Previ-
ously, geographic basis risk in futures contracts
or options was simply absorbed as a cost of us-
ing derivatives to hedge, or at least managed
as part of a well-informed hedging strategy.
By pricing basis risk, however, it is possible
to hedge changes in an underlying index that
may arise both with the passage of time and dis-
tance. Weather derivative traders, agricultural
commodity futures traders, or anyone else who
may be subject to geographic basis risk can
benefit from applying this technique to their
particular circumstance, given a properly func-
tioning over-the-counter market in the neces-
sary contracts.

Estimation results, obtained using experi-
mental data on whiteflies in California cotton,
show that a composite linear/nonlinear spatial-
temporal model of insect growth and diffu-
sion is preferred for forecasting the determin-
istic component, while a mean-reverting geo-
metric Brownian motion process with discrete
jumps provides the best fit to the stochastic
part. Therefore, the most comprehensive spec-
ification is used to forecast spatial and tempo-
ral variation in insect population numbers and
thereby, input for the derivative pricing model.

Calculating derivative prices involves a sim-
ple risk-neutral procedure. We use Monte
Carlo simulation methods to calculate deriva-
tive prices over a complete “grid” that simu-
lates a grower’s farm, each part with a different
level of insect risk. Derivative prices are found
to vary significantly both over time and over
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space as the insect population grows and dis-
tributes itself throughout space. It is at least
theoretically possible, therefore, that these
derivatives could be used to hedge the risk
from the spread of an insect species through
different parts of a grower’s farm. The ex-
tent of the improvement in risk-return out-
comes that may be possible by hedging with
insect derivatives is estimated by simulating
three risk-return measures under hedging and
no-hedging scenarios on a representative Cal-
ifornia cotton farm. Because the hedging re-
sults dominate the nonhedging measures for
this case-study, insect derivatives may indeed
be a useful part of an insect-risk management
strategy.

By developing a relatively straightforward
method of pricing bug options, this research
may help growers trade insect derivatives with
natural counterparties (for example, chemi-
cal companies, insurance companies Or nurs-
eries), thereby transferring risk to someone
more willing to bear it. Second, by trading in-
sect derivatives, chemical companies may have
access to another means of raising capital for
new product development, or a way to smooth
revenue streams from limited-use chemicals.
Third, with an active insect derivative market,
growers could use the proceeds from writing
options to offset the cost of higher insecticide
costs. More generally, this paper provides a
method of trading spatial risk. Transportation
costs for grain farmers, spatial inequities in de-
mand fluctuation for energy producers or sup-
ply shocks in feed supply for cattle ranchers all
give rise to instances where basis risk may be
important. Trading “spatial options” may be an
important development in risk management in
many contexts beyond that considered here.

Because of the potential value of insect
derivatives, and the weakness of existing data,
there are many avenues for future research on
this topic. First, the primary limitation of our
study is the use of experimental data. While
these are currently the only spatial data avail-
able on this type of insect, new initiatives in
creating GIS maps for Lygus bugs and B. tabaci
are underway (Carriere et al. 2006). Research
efforts like this, and others in this vein, will
greatly improve our ability to conduct spatial-
temporal insect diffusion estimation. Second,
our data describe two seasons of movements
for one insect species consisting of 39 pooled
time series, cross-sectional observations of the
25-cell experimental grid. Although sufficient
for the purposes outlined here, practical im-
plementation of insect derivatives would likely
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require a longer time series for more spatial
locations. It is also important to note that our
data are relevant to the population of B. tabaci
in 1994 and 1995 so our results are not intended
to be useful for a trading program initiated in
the current year. Resistance, genetic evolution,
or the growth of predator populations all mean
that trading will have to be based on estimates
from contemporaneous data.

The possibility of moral hazard must be
taken into account both in crafting insect
derivative contracts and in gathering data for
index construction. As in the case of weather
derivatives, an objective measuring site or
methodology can be specified in the contract
that removes the insect count from any influ-
ence by the grower. In areal-world application,
insect derivatives would be defined over rela-
tively wide geographic areas—far wider than
the experimental plot used here. Emerging re-
search in entomology (Carriere et al. 2006)
applies GIS data handling techniques to cre-
ate more detailed spatial maps of insect move-
ments, over wider areas, than is currently avail-
able. By averaging insect counts over a num-
ber of different assessment sites or by creat-
ing statistical projections for each cell within a
geographic area (using krieging or similar spa-
tial interpolation techniques) the moral hazard
problem can be successfully avoided. In fact,
the empirical method presented here may be
used to determine the appropriate level of spa-
tial aggregation used to construct the popula-
tion index. This level of aggregation would bal-
ance the cost of basis risk with the benefit of re-
moving any possibility for individual growers
to tamper with the measurements.? Finally, the
novel nature of insect derivatives raises obvi-
ous questions as to their usefulness and practi-
cality as risk management tools. However, with
the rapidly expanding use of tradable permits
to control many other types of externality, both
environmental and otherwise, insect derivative
trading now seems a natural approach to com-
plete a previously missing market.

[Received July 2007;
accepted March 2008.]
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